Pembuktian Integral cos x dx = sin x + C
turun-kan kedua ruas, sehingga menjadi
cos x =
sin x
cos x =
sin x
dari persamaan terakhir ini, berarti pembuktian
cos x dx = -sin x ekivalen dengan membuktikan
sin x = cos x. Disini akan dimanfaatkan Definisi Turunan.
ambil f(x) := sin x
f’(x) =
![\frac{f(x+h)-f(x)}{h} \frac{f(x+h)-f(x)}{h}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vCVSiYjQ_ndgGzzliv67ftBXIgBE7Z339ID6dFwLfa9-Vi1PkMCEVoKAzKlPjM2IxtkqvW0HRMDc_Fn_dTGX7I4mFok43iGCtHSa7rayv6CEC08R71Lvk7b1udNH35mXKA7CBBjOwzNuK62RradPOjRYYdYf5gaie97StI1Cs=s0-d)
=
![\frac{cos(x).cos(h)-sin(x).sin(h)-cos(x)}{h} \frac{cos(x).cos(h)-sin(x).sin(h)-cos(x)}{h}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tmew3aLXOaDAipyTy7JpQPwoLc7TIpueO5NETcbhtd748CBjO0CWyP8891tWrGMPaadm_7N2UzAfx7xkeSDfxapNHLV3MjyrvixbOA1p9RRmovTCKfu67zm_pHyXywR0AkIwxa5tL_6XEVXUN8l8Vrvg2CuodCm3YK9EqvFrewS2ZUOP4_5qTYVRMwMwSmBJcfvL8=s0-d)
=
–
![\frac{sin(x).sin(h)}{h} \frac{sin(x).sin(h)}{h}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_us478n2hb1vGnw0_m-86E7IJs_AerYfzs0KqmfdY1XtMP7ev6G59GKC5eq0sJGgek_a-B1exTh2GRYU1t194OlSnbAXU3SWHjti9oO8Otoikb2GFD3XFwxeQ83AknoTaZk6Z2YlFrOqqqkFv0l0YU2eJdXXQ6qhquoqaI-zVo=s0-d)
= cos x
–
![\frac{sin(x).sin(h)}{h} \frac{sin(x).sin(h)}{h}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_us478n2hb1vGnw0_m-86E7IJs_AerYfzs0KqmfdY1XtMP7ev6G59GKC5eq0sJGgek_a-B1exTh2GRYU1t194OlSnbAXU3SWHjti9oO8Otoikb2GFD3XFwxeQ83AknoTaZk6Z2YlFrOqqqkFv0l0YU2eJdXXQ6qhquoqaI-zVo=s0-d)
= cos x
–
![\frac{sin(x).sin(h)}{h} \frac{sin(x).sin(h)}{h}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_us478n2hb1vGnw0_m-86E7IJs_AerYfzs0KqmfdY1XtMP7ev6G59GKC5eq0sJGgek_a-B1exTh2GRYU1t194OlSnbAXU3SWHjti9oO8Otoikb2GFD3XFwxeQ83AknoTaZk6Z2YlFrOqqqkFv0l0YU2eJdXXQ6qhquoqaI-zVo=s0-d)
= cos x
– sin x
![\frac{sin(h)}{h} \frac{sin(h)}{h}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vYEsp2taeF8KLIamqSRGnDfn3-eMqMcEEcp1JYBKqZvdniic0E1kQYF-vZ_xADoPj0Or2P95awuDeeVBjiZCDBs5tv029J7ZBITzgi2p-i8b2Rcv7cJhDiW_Ym5B-VHSyyGhrfZ1t9n0SXbrLQlUDagsfjfLsS0Q=s0-d)
= cos x
– sin x
![\frac{sin(h)}{h} \frac{sin(h)}{h}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vYEsp2taeF8KLIamqSRGnDfn3-eMqMcEEcp1JYBKqZvdniic0E1kQYF-vZ_xADoPj0Or2P95awuDeeVBjiZCDBs5tv029J7ZBITzgi2p-i8b2Rcv7cJhDiW_Ym5B-VHSyyGhrfZ1t9n0SXbrLQlUDagsfjfLsS0Q=s0-d)
= cos x
– sin x
![\frac{sin(h)}{h} \frac{sin(h)}{h}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vYEsp2taeF8KLIamqSRGnDfn3-eMqMcEEcp1JYBKqZvdniic0E1kQYF-vZ_xADoPj0Or2P95awuDeeVBjiZCDBs5tv029J7ZBITzgi2p-i8b2Rcv7cJhDiW_Ym5B-VHSyyGhrfZ1t9n0SXbrLQlUDagsfjfLsS0Q=s0-d)
= cos x .
sin h .
.
– sin x .
![\frac{sin(h)}{h} \frac{sin(h)}{h}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vYEsp2taeF8KLIamqSRGnDfn3-eMqMcEEcp1JYBKqZvdniic0E1kQYF-vZ_xADoPj0Or2P95awuDeeVBjiZCDBs5tv029J7ZBITzgi2p-i8b2Rcv7cJhDiW_Ym5B-VHSyyGhrfZ1t9n0SXbrLQlUDagsfjfLsS0Q=s0-d)
= cos x . 0 . 1 .
– sin x . 1
= -sin x
Jadi terbukti
DONASI VIA PAYPAL
Bantu berikan donasi jika artikelnya dirasa bermanfaat. Donasi akan digunakan untuk memperpanjang domain https://4rrwani.blogspot.com/. Terima kasih.
Newer Posts
Newer Posts
Older Posts
Older Posts
Comments